In this work, We use PCA three dimensional data. Matlab Code % PCA Model clear all, clc , close all hold on axis equal axis([-2 2 -2 2 -2 2]) % Step 1: Get some data X = [1 2 -1 -2 0; 0.2 0 0.1 0.2 -0.4; 1.2 0.3 -1 -0.1 -0.4]'; % Step 2: Substract the mean plot3(X(:,1),X(:,2),X(:,3),'ko'); XAdjust = X-repmat(mean(X),size(X,1),1); plot3(XAdjust(:,1),XAdjust(:,2),XAdjust(:,3),'ro'); % Step 3: Calculate the covariance matrix CM = cov(X); % Step 4: Eigenvalue and Eigenvector [V D]= eig(CM); % Step 5: Choosing component f1 = V(:,1)'; f2 = V(:,2)'; f3 = V(:,3)'; F=[f1; f2; f3];